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Abstract: For the seismic analysis of dams, the spatial variation of the ground motion around the underlying 

canyon, generated by Dynamic Soil-Structure Interaction (DSSI), may introduce differential displacements, 

possibly detrimental for the stability of high dams. The Direct Method (DM) is the most general procedure to 

numerically simulate the local spatial variation of the ground motion, when performing both linear and nonlinear 

seismic DSSI analyses. This method relies on the availability of special Free-Field Boundaries (FFBs), which 

shall input the seismic wave train and simultaneously absorb outgoing waves at the artificial boundary of the 

adopted FEM model. However, FFBs are seldom implemented by default in most commercial FEM codes. An 

original implementation of the DM in Comsol Multiphysics is here presented and validated against available 

analytical solutions. The present work demonstrates that rigorous DSSI analyses can be correctly performed 

in the above-mentioned mechanical context, even by using standard FEM programs, once the FFBs are 

correctly implemented and handled. 

1. Introduction 

A detailed study of the seismic risk is mandatory for large dam plants located in seismically active regions. 

One of the crucial aspects for a realistic seismic analysis of a dam is the simulation of the complex wave 

mechanism induced by Dynamic Soil-Structure Interaction (DSSI). When an incident seismic wave front 

impinges the dam-foundation interface, wave diffraction occurs due to the inability of such interface to conform 

to the wave field. Scattered (reflected and diffracted) waves are spread into the surrounding soil without coming 

back. Seismic waves setting the dam into vibration, once reflected, are also radiated into the soil, thus 

introducing additional waves within the foundation. Since the motion of the dam depends on that of the 

foundation and vice versa, the DSSI phenomenon is fully coupled. 

The numerical simulation, e.g. by the Finite Element Method (FEM), of DSSI phenomena poses several 

complications due to the need of materializing an artificial border, so called interaction horizon (Wolf, 1988), 

where truncating the spatial extension of the model. The computational strategy for handling the unbounded 

domain not included into the FEM model (far-field) is the main and unique difference among the two main 

families of methods for simulating DSSI: the Substructure Method (SM) and the Direct Method (DM). 

The application of the DM and of its variants has been gradually spreading in dam engineering practice since 

the last decade. The main practical advantages of the DM as compared to the SM are the following. In the DM 

the effect of the omitted far-field is reproduced by imposing local Absorbing Boundary Conditions (ABCs) along 

the artificial boundary of the numerical model. Such transmitting boundaries are devised to approximate the 

radiation condition, i.e. to limit the wave reflection at the artificial boundary. The simplest of such ABCs is the 
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well-known viscous boundary of Lysmer and Kuhlemeyer (1969), which is available in the most of commercial 

FEM computer program. Instead, the SM needs boundary integral techniques to calculate the dynamic 

stiffness matrix of the unbounded far-field (Wolf, 1985; Chopra, 2020), such as the Boundary Element Method 

(BEM), which are seldom available in commercial software for structural analysis. Moreover, the DM also 

allows to simulate the nonlinear behavior of the dam and of the neighboring foundation (near-field) in the time 

domain, as opposed to the SM, being usually formulated in frequency domain and, thus, requiring a linear 

behavior of the dam, the reservoir and the foundation. 

When the dynamic loading is directly applied within the computational domain, the only scope of an ABC is to 

transmit outgoing waves out from the numerical model. Froio et al. (2019) showed that the latter case occurs 

when implementing the DM under the condition of a spatially uniform Ground Motion (GM) in the absence of 

the structure, as traditionally assumed in the seismic assessment of dams. Nevertheless, the matter becomes 

more intricate when the spatial variation of the GM caused by the seismic wave passage must be accounted 

for, as the truncation boundary should allow the incoming seismic wave to enter the model without any 

modification as well as to ensure that scattered waves are absorbed. Standard ABCs are not able to 

accomplish this task. Thus, when the excitation originates from outside of the model in the form of incoming 

seismic waves, the formulation of the ABCs needs to be modified. 

Since the shear wave velocities of the earth’s surface lie in the range from about 0.1 km/s to about 3 km/s and 

the strong earthquake shaking of interest falls in the frequency range from about 0.1 Hz to about 20 Hz, the 

corresponding wavelengths are from tens of meters to tens of kilometres (Sánchez-Sesma, 1987). Then, for 

a dam footprint having dimensions near to the wavelengths associated with the most important periods of the 

GM, appreciable variations of GM amplitudes and phases occur along the dam-foundation interface even in 

the absence of the dam. The spatial variation (incoherence) of the GM caused by local site topography and 

geology may have significant effects on the seismic GM and, thus, are of particular significance for either the 

assessment of the seismic risk of existing dams or the planning and seismic design of new important 

hydroelectric facilities. 

The seismic amplification conveyed by ridges and canyons, so-called site effect, has long been recognized as 

significant. The observations based on available strong motion records near the dam footprint during 

earthquakes have shown the GM is far from being uniform, especially at its higher frequency components, as 

reported by Hall (1988), Alves and Hall (2006), Chopra (2012) and more recently by Koufoudi et al. (2018). 

The outcomes of numerical models implementing either the SM (Szczesiak et al., 1999; Maeso et al., 2002; 

Chopra and Wang, 2010; Wang and Chopra, 2010) or the DM (Løkke and Chopra, 2017-2019; Jin et al., 2019; 

Sotoudeh et al., 2019; Varmazyari and Sabbagh-Yazdi, 2021) have confirmed that the spatial nonuniformity 

of the GM produced by vertically propagating incoming seismic waves has an appreciable influence on the 

structural response of dams.  

A forthright application of the DM in the realm of finite elements under the assumption of a vertical propagation 

of the seismic waves was possible by the introduction of the Free-Field Boundary (FFB) devised by Zienkiewicz 

et al. (1989). The basic idea of the FFB is to augment the numerical model with free-field columns and planes 

to separately calculate the vertically propagating incident seismic wave field, so that its absorption by any ABC 

acting on different elevations of the artificial boundary can be prevented, as explained in the following 

Section 2. However, at present FFBs are not available by default in most of the commercial FEM codes 

commonly used for the seismic analysis of dams. To fill this gap, this paper illustrates an original and 

convenient computational strategy to model the FFB into COMSOL Multiphysics®. To the authors’ best 

knowledge, no similar approach has been accomplished before by this FEM software. The robustness and 

accuracy of the present implementation are confirmed through a consistent validation process based on two 

benchmark problems whose analytical solution is well-known. Hence, the present work demonstrates that the 

spatial variability of the GM caused by vertically propagating seismic waves can be rigorously simulated using 

standard FEM programs once the FFBs are correctly implemented and handled. 

The present paper is organized as follows. The formulation of the DM for linear DSSI analysis is the subject of 

Section 2, whereas its implementation in COMSOL Multiphysics® is presented in Section 3. The validation 

analyses are discussed in Section 4. Conclusive considerations of this work are summarized in final Section 5.  
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2. General formulation of the Direct Method 

In the present section, the formulation of DSSI is discussed with reference to an arbitrary three-dimensional 

linear soil-structure system. The extension of the explained formulation to nonlinear problems entails minor 

modifications (see e.g. Aydinoğlu, 1993).  

Let consider the general scheme portrayed in Figure 1. The generalized structure, denoted by capital letter ��, 
includes the structure (�) and the near-field (�), that is the neighboring foundation enclosing all the material 

inhomogeneities of the soil, possibly exhibiting a nonlinear behavior. The far-field (�), i.e. the soil-structure 

system deprived by the generalized structure, is conceived as a semi-unbounded domain possibly having a 

countable set of layers. The geometry of the far-field, i.e. the shape of the free-surface and of the interfaces 

between the layers, if any, is assumed to extend towards infinity along the normal direction to the so-called 

interaction horizon Γ� (Wolf, 1988), the latter being the ideal interface between the generalized structure and 

the far-field. The mechanical properties of the far-field may vary with depth, but they are assumed to be uniform 

within each individual layer. The layers are made of isotropic linear viscoelastic materials, except for the bottom 

homogeneous linear elastic half-space (seismic bedrock), which is traditionally assumed to be undamped. 

The location of the interaction horizon is in charge to the analyst, depending on the characteristics of the DSSI 

problem at hand and on the adopted methodology to solve it. Since part of the scattered wave field is quite 

always reflected at Γ� due to the faulty absorption abilities of any local ABC, the generalized structure must 

always include an adequate volume of the neighbouring soil. Moreover, a reliable simulation of the nonlinear 

response of the generalized structure can be only attained by placing the interaction horizon sufficiently far 

away from the structure, so that the linear elastic behaviour of the far-field can be justified. 

Although any numerical method apt to spatially discretize the governing equations of motion of the dam-

foundation system may be considered, the FEM is usually adopted by virtue of its capabilities to deal with 

embedment effects as well as any other geometrical or mechanical inhomogeneity quite easily. Thus, the 

generalized structure is here discretized as an assembly of finite elements. 

Let �� be the total displacements vector obtained from a FEM discretization of the system, where the adjective 

“total” means that displacements are evaluated with respect to a fixed coordinate system. The displacements 

of the generalized structure are included into u
� = �u
� , u��, u�� ��
, the nodal displacements of the interaction 

horizon are identified by u�� , whereas the far-field displacements are pointed out by u�� . Clearly, all previously 

introduced displacement vectors depends on time variable �. 

 

Figure 1. General scheme and notation of the DSSI problem. 

By performing a dynamic condensation of the contribution of far-field degrees of freedom (�), the linear 

equations of motion of a viscously damped soil-structure system in the frequency domain read (Wolf, 1985): 
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 �K�

 K�
�K��
 K����� + ����� �  u�
�u��� ! =  0����� u���! ; (1)

where u�� = $u�
� , u��� %�  is the Fourier transform of u� = $u
� , u�� %� , K�&' = K&' + i)C&' − ),M&'  is the dynamic 

stiffness (impedance) submatrix relating the degrees of freedom (dofs) 0  and 1 , K&' , C&'  and M&'  are the 

stiffness, damping and mass submatrices, respectively, ) is the angular frequency and  

 ����� = K���� + K���K���23K���; (2)

is the condensed dynamic stiffness matrix of the far-field, expressing the radiation condition enforced by such 

unbounded linear viscoelastic domain at the dofs ensuing from the FEM discretization of Γ� . Vector u��� in 

Eq. (1) is the response of the far-field evaluated at the interaction horizon that would occur in the absence of 

the generalized structure (Wolf, 1985). 
The seismic loading of the soil-structure system on the rhs of Eq. (1) can be evaluated once u��� is available. 

Following a well-established practice in seismic engineering, far-field response u��� is usually replaced by so-

called Free-Field Motion u��� (FFM), i.e. the response of a viscoelastic layered half-space obtained by projecting 

towards infinity the geometry of the interaction horizon. The main advantage of using u��� in place of u��� is that 

the first response can be calculated from simpler analytical/numerical approaches than those required to 

calculate u��� , especially under the usual assumption of vertical propagation of the seismic waves. The 

impedance of the FF half-space is here denoted by ����5 . 

Substituting the relationships existing between u��� and u��� (Wolf, 1985): 

 ����5 u��� = ����� u���; (3)

into Eq. (1), the following system is obtained 

 �K�

 K�
�K��
 K����� + ����� �  u�
�u��� ! =  0����5 u���! ; (4)

expressing the equations of motion of DSSI with the FFM determining the load vector. According to the 

previous equation, the load vector is expressed as the product between the dynamic stiffness matrix of the FF, 

condensed at the nodes belonging to the interaction horizon where the generalized structure is assembled, 

and the FFM of the same nodes.  

Finally, let F��� be the integral of free-field stresses 7�� over the finite element discretization of Γ�: 

 F��� = 8 N��7��:u��;∙n d�?@ ; (5)

where N�  is the 3 × 3��  matrix of global shape functions restricted to Γ�  (��  is the total number of nodes 

belonging to the mesh of Γ�) and n is its normal vector. Then, by equilibrium one has (Wolf, 1988) 

 F��� + ����� u�� = ����5 u��; (6)

which, once substituted into Eq. (4), determines the following final system of equations: 

 �K�

 K�
�K��
 K����� + ����� �  u�
�u��� ! =  0����� u��� + F���!. (7)

A schematic representation of Eq. (7) and its physical interpretation is given in Figure 2. Notice that the 

radiation condition of the far-field, transposed in numerical terms by matrix ����� , applies to motion u��� − u��� 

arising from the waves scattered by the generalized structure. As compared to Eq. (4), Eq. (7) has the 

advantage of not requiring the assembly of matrix ����5 , but on the other hand it requires the computation of 

both FF displacements and boundary tractions. 

The time domain version of Eq. (7) is obtained owing to the Convolution Theorem: 
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 �M

 M
�M�
 M���� � CuD 
�uD �� E + �C

 C
�C�
 C���� � CuF 
�uF �� E + �K

 K
�K�
 K���� � Cu
�u�� E + G 08 ���� (� − H):u�� − u��;IH�
J

K = C 0F��E ; (8)

where ���� (�) is the Inverse Fourier Transform of impedance matrix ����� ()) and the overdot is the adopted 

notation for a time derivative. Eq. (8) forms the reference formulation of the DM in the time domain. 

In the DM the radiation condition is approximated by imposing local ABCs along the interaction horizon. The 

local property of an ABCs means that the enforced boundary condition involves the responses of at most few 

points in the neighbourhood of the boundary point under consideration within a relatively small time-window. 

This is opposed to the exact radiation condition of Eq. (8), where the reaction-displacement relation along Γ� 

is given by a convolution integral (nonlocal in time) of a dense matrix-vector product (nonlocal in space). 

Numerous ABCs have been proposed in the literature, such as the viscous boundary, the paraxial boundary, 

the DtN map, the Perfectly Matched Layer, etc.. For the DSSI analysis procedure described in the following 

section the viscous boundary is selected owing to its availability in almost any commercial FEM code, 

acceptable accuracy and ease of implementation. 

 
Figure 2. Schematic model, notation and physical interpretation of the DM. 

3. Implementation of the DM in Comsol Multiphysics® 

Let consider the scheme of a three-dimensional dam-foundation system shown in Figure 3. The unbounded 

foundation domain is truncated by a box-shaped artificial boundary (interaction horizon) having its faces 

oriented as the fixed cartesian axes L, M, N. Only the upper free surface of the model tracing the real topography 

of the valley may depart from flat geometry.  

Let Γ�& be the subset of Γ� having normal parallel to the 0-axis. By applying the viscous boundary of Lysmer 

and Kuhlemeyer (1969), the exact radiation condition in Eq. (8) is approximated as follows: 

 8 ���� (� − H):u�� − u��;IH�
J ≈ :C���,P + C���,Q + C���,R;:uF �� − uF ��; = C��� :uF �� − uF ��;; (9)

where 

 C���,P = 8 N��S diag:�V(W), V(�), V(�)�;N�d�?@X , C���,Q = 8 N��S diag:�V(�), V(W), V(�)�;N�d�?@Y ,
C���,R = 8 N��S diag:�V(�), V(�), V(W)�;N�d�?@Z ; (10)

are the damping matrices ensuing from the distributed viscous dashpots placed on the vertical faces and on 

the horizontal bottom face of the interaction horizon, S is the far-field mass density, V(�) and V(W) are its shear 

wave and pressure wave velocities, respectively, and diag(d) denotes a diagonal matrix having vector d on its 

main diagonal. 
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Figure 3. General arrangement of the computational model implementing the DM in Comsol Multiphysics®. 

The viscous boundary given by Eq. (9) should be interpreted as an approximation of the exact radiation 

condition, which is usually accurate for practical engineering purposes provided that the extension of the near-

field is sufficiently large. Since the wave absorption capabilities of viscous boundaries downgrade for oblique 

angles of incidence, it is advisable to leave a relatively large margin between the interaction horizon and the 

portion of the generalized structure whose response is of interest. 

Substitution of Eq. (9) into Eq. (7) and Eq. (8) yields the final equations of motion of the DM including the 

viscous boundary as the adopted ABC: 

 �K�

 K�
�K��
 K����� + i)C��� �  u�
�u��� ! =  0P���!. (11a)

 �M

 M
�M�
 M���� � CuD 
�uD �� E + �C

 C
�C�
 C���� + C��� � CuF 
�uF �� E + �K

 K
�K�
 K���� � Cu
�u�� E = C 0P��E ; (11b)

in the frequency domain and in the time domain, respectively, where 

 P�� = C��� uF �� + F��; (12)

are the so-called effective earthquake forces (Løkke and Chopra, 2017 and 2018). 

Hence, the boundary tractions acting on the interaction horizon are made of two contributions. The first 

contribution are boundary reactions −C��� :uF �� − uF ��; of the viscous dashpots to the scattered motion only, thus 

leaving the FFM unaffected. The second contribution originates from traction resultants F�� of the FFM. The 

latter term may also include the reaction forces ensuing from any pre-existing static loads acting on the 

generalized structure. A FFB is any boundary condition capable of providing both actions on Γ�.  

The calculation of FF velocities uF �� and traction resultants F�� must rely on the definition of a suitable numerical 

model of the FF problem. Under the usual and pragmatic hypothesis of a seismic wave field consisting of plane 

SH-, SV-, and P-waves vertically propagating upwards from the underlying semi-unbounded foundation 

(Chopra, 2020), the FF system can be modelled by at most eight planar layers and eight FF columns added 

to the computational model of the generalized structure, as shown in Figure 3. Both FF layers and columns 

are also discretized by finite elements with the same mesh density of the generalized structure. 

Twin FF layers (or planes) are introduced for each vertical face of the interaction horizon, sharing the same in-

plane geometry and stratigraphy of Γ�. Each layer simulates the FF response of the half-space obtained by 

projecting towards infinity the geometry of the corresponding vertical face of Γ� along its normal direction. Two 

layers are needed for each vertical face of Γ�  because two different sets of boundary conditions must be 

enforced to reproduce the out-of-plane (SH-wave field) and the in-plane (SV- and P-wave fields) half-space 

motion. In particular, the following BCs must be prescribed at any FF layer with outer normal n& (0 = L, N): 

 �� − (�� ∙ n&)n& = 0,     for out-of-plane motion; (13a)
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 �� ∙ n& = 0,                                for in-plane motion; (13b)

where �� = �eP� , eQ� , eR���
 is the three-dimensional FF displacement vector. 

Since any FF layer is a truncated model of a semi-infinite half-space, its vertical boundaries must be also 

endowed with FFBs. Towards this scope, twin FF columns are located at each corners of the FEM model to 

reproduce the FF response of a flat half-space sharing the same stratigraphy of the adjacent FF layers, which 

is assumed to indefinitely extend in both horizontal directions. Then, two FF columns must be added at each 

model corner to impose the following two distinct sets of BCs at all nodes of a FF column: 

 eQ� = 0,                for S-wave vertical propagation; (14a)

 eP� = eR� = 0,     for P-wave vertical propagation; (14b)

when simulating vertical wave propagation by finite elements. The first of Eqs. (14) prevents any bending effect 

of the FF column, so that its dynamic response is compelled to display a pure shear deformation; the second 

of Eqs. (14) inhibits any unwanted Poisson’s effect associated with the column axial vibration.  

The parts of the FF model are highlighted in the Figure 4. The seismic response of the FF model is processed 

in parallel with that of the generalized structure as the dynamic analysis advances either in the time or in the 

frequency domains. The FF response must be independent from that of the generalized structure. In fact, the 

FF system is, by definition, a regular half-space located at an unbounded distance from the generalized 

structure and, thus, it cannot be reached by the waves scattered by the generalized structure. On the contrary, 

the FF response (uF ��  and F��) calculated by each FF column are mapped to the lateral boundaries of the 

adjacent FF planes by using the General Extrusion (“genext”) nonlocal coupling function available in Comsol 

Multiphysics®. Likewise, uF ��  and F��  calculated within the domain of each FF layer are mapped to the 

corresponding lateral face of the interaction horizon by means of the same coupling function. Hence, the 

information travels from the FF columns to the FF layers, and from the FF layers to the generalized structure, 

but never in the opposite way. 

Finally, the effective earthquake forces applied at the bottom boundary of the model must be calculated. 

Currently, the standard approach in dam engineering is to define the earthquake as a suite of three orthogonal 

acceleration components jPkl(�), jQkl(�), jRkl(�) describing the motion of an outcrop point, i.e. a control point 

located at the rock surface (Figure 1) where strong-motion earthquakes are normally recorded (Wolf, 1985). 

The spectra of such acceleration components should, in some sense not examined here, be consistent with a 

target spectrum representing the seismic hazard of the site, which is usually derived according to either a 

deterministic or a probabilistic seismic hazard analysis (Kramer, 1996).  

Since seismic hazard analysis typically does not consider local site effects, such as topography and 

stratigraphy, an outcrop signal is intended as the surface motion of a reference flat half-space. Displacement 

field e� of a flat half-space excited by solely plane SH-, SV- and P-waves propagating in the vertical direction 

(M), is given by the solution of the well-known one-dimensional wave equation (Wolf, 1985; Kramer, 1996): 

(a) (b) (c) 

Figure 4. Components of the model required for computing FF displacements and traction resultants: vertical 

layers for computing the out-of-plane (a) and the in-plane (b) components of the FFM at the lateral artificial 

boundary of the generalized structure; corner columns for computing the FFM at the lateral artificial 

boundaries of the vertical layers (c). 
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(a) (b) 

Figure 5. Bottom horizontal face of the interaction horizon where the ABC is enforced (a) and reference 

plane where effective earthquake forces are applied (b). 

 e&�(M, �) = e&�m(V� − M) + e&�n(V� + M); (15)

where e&�m and e&�n denotes the incoming (incident) and outgoing (reflected) wave fields, and V = V(W) in the 

case of pressure waves (0 = M) or V = V(�) in the case of shear waves (0 = L, N).  

Within the assumed reference frame (M > 0 if upward), the radiation condition at any depth M provides the 

following expression of the boundary traction for a unit normal p pointing in the negative M-direction: 

 �&�m = σ&'�m(��m)r' = VSeF &�m , �&�n = σ&'�n(��n)r' = −VSeF &�n . (16)

whose resultants over the FEM discretization of the horizontal boundary M = MJ is 

 F��,Q = 8 N��s�Jd�?@Y = 8 N��Sdiag:�V(�), V(W), V(�)�;(2�F �mJ − �F �J)d�?@Y = C���,Q(2uF �mJ − uF �J); (17)

where �F �J = �F �(MJ, �). Thus, by imposing that FF stress resultants at the bottom boundary F��,Q
 is equal to F��,Q

, 

i.e. ��J = ��J, the outcrop motion would be recovered at the free surface of the generalized structure when 

the latter coincides with the reference flat half-space. Recalling Eq. (12), this in turn implies that the effective 

earthquake forces to be applied at the bottom boundary are 

 P��,Q = 2C���,QuF �mJ. (18)

The FF incoming wave velocities uF �mJ at a given depth must be consistently defined to obtain the surface 

control motion vkl(�) at the surface of a one-dimensional column representing the reference half-space. This 

task can be accomplished by performing a one-dimensional deconvolution analysis of the outcrop motion 

(Løkke and Chopra, 2017). When specifying the earthquake excitation in this way, the spatial variation of the 

GM is automatically considered in the numerical analysis, albeit predominantly in the vertical direction. 

Effective earthquake forces P��,Q
 do not need to act at the bottom boundary, where ABCs are enforced. Instead, 

they can be theoretically applied along any horizontal plane in between the bottom artificial boundary of the 

model and the highest depth below which the near-field can be guaranteed being regular, i.e. constituted by 

horizontal layers made of linear viscoelastic materials. In fact, it may happen sometimes that the application 

of external forces badly interacts with the behaviour of the adopted ABC. If this is the case, the effective 

earthquake forces may be applied to a horizontal surface just above the bottom face of the artificial boundary, 

as illustrated in Figure 5. Although this paper illustrates a Comsol Multiphysics® realisation, the procedure 

herein presented is equally valid and adaptable to other commercial FEM codes if a coupling functionality 

analogous to the General Extrusion are made available. 
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4. Validation of the numerical results 

This section illustrates the results of several numerical experiments carried out to verify the correct functioning 

of the present implementation of the DM. The evaluation of the consistency and accuracy of the proposed 

methodology is based on the comparison between the computed displacement at the foundation surface for 

two benchmark problems, whose exact analytical solutions are available in the literature. The analytical 

solutions of both benchmark problems have been implemented in the MatLab environment. 

The first benchmark problem, discussed in Section 4.1, consist in calculating the surface amplification of a 

planar wave vertically propagating into a homogeneous viscously damped elastic layer resting on a 

viscoelastic half-space. The second benchmark problem, presented in the subsequent Section 4.2 pertains 

the scattering of a train of SH harmonic waves propagating in the vertical direction carried out by a semi-

cylindrical canyon located at the free surface of a half-space.  

4.1. Vertical propagation of a harmonic plane S-wave in a viscoelastic layer on an elastic half-space 

Let consider a homogeneous soil/rock deposit of depth w made of an isotropic, linear viscoelastic material 

behaving according to the following Kelvin-Voigt (KV) model: 

 τ = y
γ + η
γF , τ(|})
 = η
G
 ; (19)

where τ = σ3, is the shear stress, γ = 2ε3, = e3,, is the shear strain, y
 and η
 are the material shear modulus 

and viscosity of the layer, respectively, and H(|})
 is the characteristic time scale governing the behaviour of 

the KV unit. Thus, the shear stress is given by the sum of an elastic part, proportional to the shear strain, and 

a viscous part, proportional to the shear strain rate. The shear wave velocity of the soil layer is denoted by V(�)
, 

whereas its mass density is S
. The soil layer rests on an elastic bedrock having a shear wave velocity of V(�)� 

and a mass density of S�.  

The soil layer is subjected to vertically propagating harmonic plane S-waves coming from the bedrock, with 

unitary amplitude at the surface and circular frequency ). The S-waves are polarized along the L-axis. 

The complex-valued transfer function of the system, i.e. the ratio between free surface motion of the soil layer 

and the bedrock outcropping motion, is given by the following formula: 

 �()�
∗, �∗) = 1cos()�
∗) + i�∗ sin()�
∗) ; (20)

where  

 )�
∗ = )wV(�)
�1 + i)H(|})
 = )�
�1 + i)�
Ĥ(|})
 ; (21a)

 �∗ = S
V(�)
S�V(�)� �1 + i)H(|})
 = ��1 + i)�
Ĥ(|})
; (21b)

are the complex nondimensional frequency and the complex impedance ratio, respectively. Transfer function � 

depends on real impedence ratio � = S
V�
 S�V��⁄  of the undamped system (H(|})
 = 0), on the nondimensional 

frequency of the layer )�
 = )w V(�)
⁄  and on the nondimensional characteristic time Ĥ(|})
 = H(|})
V(�)
 w⁄ . 

Eq. (20) also holds for the case of harmonic plane P-waves by substituting V(�)
 with V(W)
 into Eqs. (21). 

In the present analysis, the amount of viscous dissipation is expressed in terms of the damping factor of the 

fundamental mode of the viscoelastic layer resting on a rigid bedrock: 

 ζ = ζ3 = H(|}))
32 = Ĥ(|})
)�
32 = �4 Ĥ(|})
. (22)

To validate the procedure described in Section 3, the transfer function of Eq. (20) has been numerically 

evaluated by finite elements. The FEM model of the viscoelastic layer on an elastic half-space is shown in 

Figure 6a. The horizontal size of the FEM model of the layer is twice its depth. The vertical FEM discretization 

of the layer comprises 32 elements to reproduce the shortest wavelengths ()�
 = 4) with sufficient accuracy. 
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(a) 

 
(b) 

 

(c) 

Figure 6. FEM model of a homogeneous linear viscoelastic layer lying on a linear elastic half-space (a) and 

displacement amplitude distribution for )�
 = 1.5�, � = 10–4 and � = 0.5 (b) and � = 2.0 (c). 

  

  
Figure 7. Amplitude and phase of transfer function of Eq. (20) and numerical results (marked by crosses) 

obtained by the FEM model of Figure 6a for various values of �, )�
 and �. 

Owing to the S-wave polarization of the seismic waves, a single FF layer only needs to be introduced for each 

vertical face of the interaction horizon. Moreover, since the opposite vertical faces of the artificial boundary 

shares the same geometry, one FF layer is sufficient for modelling the FFB for each couple of opposite faces. 

As a result, a single vertical column is only required to reproduce the FFBs of both layers. Hence, by exploiting 

the symmetry of the interaction horizon and/or the directionality of the seismic input, the implementation of the 

DM may be much simplified as compared to the general case discussed in Section 3. 

A parametric study has been carried out to validate the numerical outcomes for the following values of the 

characteristic parameters: 

 � = $0.5, 2%, ζ = $102�, 0.02, 0.05, 0.10%, 0.25� ≤ )�
 ≤ 4�; (23)

encompassing about all practical circumstances encountered in site response analysis. 
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For each assigned set of parameters �, ζ, )�
, the L-displacement amplitude and phase of the central node of 

the surface has been evaluated by performing a steady-state analysis in the frequency domain. Since the 

seismic input has unitary amplitude at the outcrop point, such L -displacement coincides with transfer 

function �()�
∗, �∗) in Eq. (20). The amplitude and phase of �  versus )�
  for various values of �  and ζ are 

displayed in the sequence of graphs in Figure 7. The correspondence between the numerical results, drawn 

with crosses, and the analytical solution (continuous lines) is remarkable in the whole considered range of the 

characteristic parameters, thus demonstrating the excellent performances of the FFBs. 

The effect of impendence ratio � in amplifying or deamplifying displacement amplitudes along the depth of the 

layer is depicted in Figure 6b and in Figure 6c, respectively. 

4.2. Scattering of vertically propagating plane SH-waves by a semi-cylindrical canyon 

Let consider a half-space having a semicylindrical indentation of radius j at its free surface. The half-space is 

assumed to be homogeneous, isotropic and linear elastic with shear wave velocity V(�)� and mass density S�. 

The excitation of the half-space consists of vertically propagating harmonic plane SH-waves with circular 

frequency ) and particle motion in the N-direction with unitary amplitude at the surface.  

The complex-valued transfer function of the system, i.e. the ratio between the free surface motion and the 

bedrock outcropping motion, as derived by Trifunac (1972), assumes this expression: 

 �(�, �, 0j) =
=

⎩⎪
⎨
⎪⎧�J(0j) − −�3(0j)wJ(,)(0j)w3(,)(0j) + 2 �(−1)� ��,�(0j) − 0j�,��3(0j) − 2r�,�(0j)0jw,��3(,) (0j) − 2rw,�(,)(0j) w,�(,)(0j)� cos(2r�)�

��3 |�| < �2
�J(0�) − �3(0j)wJ(,)(0�)w3(,)(0j) + 2 � �,�(0�) − 0j�,��3(0j) − 2r�,�(0j)0jw,��3(,) (0j) − 2rw,�(,)(0j) w,�(,)(0�)�

��3                                     |�| = �2
; (24)

where 0 = ) V(�)⁄  is the (angular) wave number, � e � the coordinates of the cylindrical system centred at the 

canyon longitudinal axis, � being zero along the negative M-axis and positive counter-clockwise, �¡(¢), w¡(3)(¢) 

and w¡(,)(¢) are the Bessel function of the first kind, the Hankel function of first kind and the Hankel function of 

second kind, respectively, with argument ¢ and order £. 

The above transfer function depends on the surface position (�, �) and on the product  

 0j = )V(�) j = � 2j¤ = �¢; (25)

expressing � times the ratio (¢) between the canyon diameter (2j) and the incident SH-wavelengths (¤). 

The transfer function of Eq. (24) has been numerically evaluated by applying the DM. The FEM model of the 

half-space with a semi-cylindrical canyon is shown in Figure 8a. The depth and the lateral extent of the mesh, 

assumed equal to 3j and 4j, respectively, were selected by trial runs to minimize boundary reflection effects. 

The vertical FEM discretization of the layer comprises 36 elements to accurately approximate even the shortest 

wavelengths (¢ = 2). As for the benchmark problem discussed in the previous section, only two FF layers and 

a FF column are needed to appropriately enforce FFBs at all the lateral boundaries of the generalized structure.  

The consistency of the numerical results has been again checked by performing a parametric analysis 

(0.25� ≤ ¢ ≤ 2�). The computed values of the amplitude of �(�, �, 0j) are plotted along the L-axis in Figure 9. 

In the same figure the exact curves provided by Eq. (24) are also shown for comparison purposes. Since 

displacement amplitudes are symmetric with respect to the M-axis, amplification curves evaluated for ¢ ≤ � 

are plotted only for L ≥ 0; the remaining amplification curves (� < ¢ ≤ 2�) are plotted only for L ≤ 0. 

The numerical amplification curves satisfactorily match the target analytical ones within the whole considered 

range of ¢. Hence, FFBs prove to correctly work even for this more demanding benchmark problem. The 

spatial distribution of scattered displacement amplitudes within the half-space volume is illustrated in Figure 

8b,c for two distinct values of ¢. These maps depict the increasing complexity of the scattered wave patterns 

as the frequency of the incident wave field increases. 
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(a) 

 

(b) 

 

(c) 

 

Figure 8. FEM model of a homogeneous linear elastic half-space with a semicylindrical canyon (a) and 

displacement amplitude distribution for ¢ = 0.25� (b) and ¢ = 0.75� (c). 

 

Figure 9. Transfer function amplitude of the points lying on the surface of the cylindrical canyon under 

vertically propagating harmonic plane SH waves for various values of ¢ = 2j ¤⁄ . 

5. Conclusions 

In this paper, the general formulation of the DM and its implementation in COMSOL Multiphysics® commercial 

FEM software have been presented. The key steps needed to simulate a FFB, as required by the DM, in 

COMSOL Multiphysics® have been discussed in detail in Section 3. By the proposed methodology, any linear 

and nonlinear DSSI analysis of a dam-foundation system can be numerically solved by finite elements under 

the standard assumption of vertical propagation of the seismic waves from the bedrock towards the structure. 

To verify the rigor of the proposed implementation of the DM, the calculated displacements have been 

compared against those provided by the analytical solutions of two benchmark problems. The numerical results 

have shown a perfect match with the analytical solution of both benchmark problems, confirming the 

robustness and accuracy of the present implementation of the DM. Hence, the present analysis demonstrates 

that rigorous DSSI analyses based on the DM can be correctly executed, even within modern commercial FEM 

codes, once the FFBs are correctly set up and handled. In particular, the present methodology constitutes a 

viable and effective tool to be used for the seismic assessment of dams, as testified by the considered 

examples and derived results. 
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